US009342292B2

a2 United States Patent (10) Patent No.: US 9,342,292 B2

Taylor et al. (45) Date of Patent: *May 17, 2016
(54) CUSTOMER RELATIONSHIP MANAGEMENT (51) Imnt.ClL

SYSTEM AND METHOD GO6F 9/445 (2006.01)
GO6F 9/44 (2006.01)
(71) Applicant: SugarCRM Inc., Cupertino, CA (US) GOG6F 17/30 (2006.01)
G060 10/06 (2012.01)
(72) Inventors: Jacob Taylor, Santa Clara, CA (US); G06Q 10/10 (2012.01)
John Roberts, San Jose, CA (US); (52) IGJ0S6QCf0/02 (2012.01)

Clinton Oram, San Mateo, CA (US); NaS))

Andy Dreisch, San Jose, CA (US); Ajay CPC .. GOGF 8/65 (2013.01); GO6F 8/71 (2013.01);

GO6F 17/30312 (2013.01); GO6Q 10/06

Gupta, Cupertino, CA (US); Majed (2013.01); GO6Q 10/10 (2013.01), GO6Q 30/02

Itani, San Jose, CA (US); Julian (2013.01)
Ostrow, Cupertino, CA (US); Joseph (58) Field of Classification Search
Parsons, Austin, TX (US) CPC e GO6F 17/30312

See application file for complete search history.
(73) Assignee: SugarCRM Inc., Cupertino, CA (US)

(56) References Cited
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 U.S. PATENT DOCUMENTS

U.S.C. 154(b) by O days.

2008/0196008 Al* 82008 Brantonetal. ... 717/120
This patent is subject to a terminal dis- 2009/0271768 AL* 10/2009 Goodson ... o T17/125
claimer 2009/0271779 Al* 10/2009 Clark ... AV WA
: 2009/0328024 Al* 12/2009 Lietal. 717/169
(21) Appl. No.: 13/931,988 * cited by examiner
(22) Filed: Jun. 30, 2013 Primary Examiner — Rehana Perveen
Assistant Examiner — Raheem Hoffler
(65) Prior Publication Data (74) Attorney, Agent, or Firm — Steven M. Greenberg, Esq.;
CRGO Law
US 2013/0298114 Al Now. 7, 2013
57 ABSTRACT
Related U.S. Application Data A software-based customer relationship management system
and method.
(63) Continuation of application No. 12/185,001, filed on
Aug. 1, 2008, now Pat. No. 8,489,543. 8 Claims, 8 Drawing Sheets
J‘JE‘I \122 (124 Q’IEG 128\‘130\ 132\134\\ 138 \ 138 \140\142\ w2120
/ \ MY ACCOUNT 1 EMPLOYEES | LOGOUT | ABCUT
SUGAR SUITE
A T
USTVEWED: TN |\muoug[1 QIALLSTURES L b
SHORTCITS ST P G4 T008Y IPOR1213) — OECEMBER 2005
O CREATE CONTACT ST i ELZa {[SUN 1 MON 1 TuE 1 WED 1 THU | PR a7
0 ENTER BUSINESS CARD ,mgwupmmw Hehs EEe 12 3
O GREATE ACCOUNT b oER {9 5 & 7 8 8 M
0 CREATE LEAD HEVI'W NEEDS EEE 1; 13 ‘:Eoﬂ ;Ij ;g ;Z lf:
© CREATE CPPORTUNTY PEN NITTES % % 27 2 2
O CREATE OLDTE i _ — i
O CREATE CASE AT i i a"m,swmomm e s L2 e STEAM NOTICES
O REPORTBLG &7 £ 1D 962198 - 1000 UNTS (10 8e219 <0000 2060521
SUPERG TECH B12357 - 1600 UNITS SUPERG T=CH B 50000 2005-10-11 -
O SCHEQULE MEETING 360 VACATIONS 220340 - 1000 UNTS 360 VACATIONS 220320 0000 2005-86-06 ~ MY PIPELINE REFRESH EDNT
O SCHEDULE CALL ~IMY OPEN CASES [€STARI<FREVIOUS (D-00F D) _NEYT »ERD] POEETOAL GO
o CRRATE K 0 W S0 1 1 =1
SIAY TEADS. IEDSAILSS
NE CONTALT 1 — AL - AL PROBRATON s
FIRST MAME: SANDY HOLLER 2005 1103 0128 PV —
DOMINIGUE KILLINGER 2005 - 11-02 0123 PERCERTION ANALYSIS ———m
. W 20 1u0s PROPOSAPRICE AUOTE ——— 35
LAST NAME: (YO 0 :] NB?ﬂW\U_TI%SN/EFBEW i]
PHONE. AENULFD AW 5.1 W e e
— R 1L 28| ALY BT FROETES
EMAL: AR CNER el e R AT TGN
B o S
SAVE LA NGRS 2003 114 SO L T s
i e [R A R
- LESTRUN N2 12 0124

US 9,342,292 B2

Sheet 1 of 8

May 17, 2016

U.S. Patent

=

ALIHNJ3S 13A37 MOY

cll
4

¥

Nv38HvaNS
8ot

S3LVidNdL

8l1
T [S3INaow

SINGHL 20

H3IAV NOILOVHLSEY
ASvaviva

vil

SH3ITI0HINGD

gil

e
00!

vol

US 9,342,292 B2

Sheet 2 of 8

May 17, 2016

U.S. Patent

. T L0 LS NONH ST
Rl r—
) 3 {
S ST GO AT UV S0 e (35]
WE S8 N0 Sy TN |]
100102 0L 201} 16000 § 0N 210 Dy T
ST 581 BT M T - n__
150105500 MY OFINNEY I
NUACEEDD) | |]
o 0/ MLIAOILYTI0ON <ﬁ%%ax +INVN 1SV
— w%%%&%ﬂ NI NN | | L— - |
S NOLYD0ed 3T Wl T TN |
oA SN SOYIT AWK
A AT SIS L% A 31 S 1 O 01 YL IV o
NGBvS T IO e <« ONIC N 040000 SNOiA3Ed vE&m » 53SYTJ N3dD AN 9 INTHBE o
1 43 - ' #6022 8 c - 3660) K
TRAT WIS Ceas g SRR CLpaerai | it
L2-90-6002 o%mmm . mmrmmu E,_ 03 7v SLNN 000) - 661288 01100 2%
~ S3J110N s_stn CLP0S002 QOSSR M LTGTAC UL - sun 0oL S O ATERIO AL L 1Y o
T e T _ 3100 Y30 ©
\e B »
w2 g2 2 12 @ 6l 8l =T REILY c_zem%% utmmmn_
(s & o ETJel U A V0 O
Q. € 8 ¢ 3 5 ¥ el : INNO2Y vl a
£ oz 1 il TS0d0Hd %.g%mm (4D SS2NISTE 43UN3 O
195 1 194 | NHL [G3M | 30E F NOW 1 NS ! i 1¥INGI 3VIH)
— == LTEl 2 SNITHORS
S00c H3aW340 T ddt ONTADTAN AWR . SUONOES)
o035 32p8 5305 LS NOUDNOOBIN J0NVHEY Gl LS
TEN] | OV _ T 0T,
UL wﬁ_msa%%&g@ O OO D NGRS E@Eém
311NS HY9INS «%s %
INGY | 100901 | SHAOWNI 1 INDODDYAM \ J u:m
e rms N m?/ aes \vel \agl Lol gzl @ms) a2 izl

US 9,342,292 B2

Sheet 3 of 8

May 17, 2016

U.S. Patent

SIVINAL

81T 4
T— [S3naow

g L&

gll

0ol

£ Jid

ALIHN33S T3A3T MOY
cll

ga
art
C 4 D

NV3BavINS

801
[

H3AV1 NOILOYHLSEY

3SvavLvQ
pll

SHITIOHLNOD

70l

.

IN3IN3

a0l

N

INNOJ AH3ND
oSt

US 9,342,292 B2

Sheet 4 of 8

May 17, 2016

U.S. Patent

7 94

(1310 T3 SOV 3L 3 qéz_

NI VA3 SSvo]

HITYNUI T SSHIN &
[| SO JATT 3NV TN TREN 0T NI
ISHITHOI <
— _ OG0 3 GWY S Ry VN | . mwg.w_w @z
R B N A Al SIEIIeA gg@__M,_mﬁg__im,‘.__g;m:ma%m.“m_ ﬁ__,_ ﬂm @%
MR D ST S e © S AN BN B G 3 M
SN0 ST ML U | Sty [0 ST LY 00 3HL M Syl Em U0 D)
EE LIS 0T BT ST v TG ST %_gjq%_zu
SBL L0 YT L NN S WL O 31 G344 AN IS0 N MM S 0¥ Ko
TIMAAISHS CIAVIGS0 10 S L KOMI 5000 | SEYL JE09HNCY TIOR8 SHL MR GUP0 ST MOLSTO L 3| SO MOS0 L3
OISy L SSOLY STaNYG MY SURH
HOLC3 AMO0A0H0 | HOLKOR AAD0K0 =3 IO 0 ST JONVHD ADAY 00y 1NN GBH D
. 0ianIs = vgl
SV IV T B0 30| SalvadT BVAng \
- EVOTS LSO SAOBE 0 OOF BOWOIVOON %#| [3075 v L O 300030 ez 3085 T
\ TV WIS VS| SHLH308S O MUV TOH TN NS TR D0
ag) SYL8540e TSNEI TOUNNRAIIAGSIARI IO 0| L0 MY SEEMEIN AL 00NN BRI L _
3Lt ADNBHHND ONY SIONHE) dNL3S SINIH 3| SOHOMSSYS N SLANCOY IS0 VWY NSO HESn e 13004 Ew% @
3003 H5905 HiH ONY 30 Wil - R 33T RIS SN0 | SONILIZS MDD o Va1 3IV34] v
WIISAS < H35N 3V
AR JNOH ‘NOIVEISININGVr (_ SINJIHON
0] 55060 T\ QNTALTIVS Y AL TR NEERINOS ~1SW00 3008 Ml 760 ¢ 157 07 _ S0 Caevle L TC ONTNOS D G6pl01 S0 T2 Gaval K73
C_ [HOHUS v z__>5<m_>_8d>1»_
€3 NEE AT 315D 0 e S N0 S0 N Gl A SR
30InS 8490 0507 ANV 0K HLlM 3 ig38
|80 1IN0 1 SHOGA | NN | <<OS WdOHVYONS
09l

U.S. Patent May 17, 2016 Sheet 5 of 8 US 9,342,292 B2

SINSTALLDEFS = ARRAY(
'ID => 'SONGS'
'IMAGE_DIR'=> '<BASEPATH>/IMAGES',
‘COPY' => ARRAY(
ARRAY (' FROM'=> '<BASEPATH>/MODULE/SONGS',
‘TO'=> 'MODULES/SONGS',),
).

' LANGUAGE ' =>
ARRAY (ARRAY { 'FROM' =>' <BASEPATH>/APPLICATION/APP_STRINGS.PHP

'TO_MODULE'=> 'APPLICATION', 'LANGUAGE'=>'EN_US'),

ARRAY ("FROM ' =>
' <BASEPATH>/ADMINISTRATION/EN_US.SONGSADMIN. PHP',
‘TO_MODULE'=> 'ADMINISTRATION', 'LANGUAGE'=>'EN_US"')
),
*ADMINISTRATION'=> ARRAY({
ARRAY (' FROM=>'<BASEPATH>/ADMINISTRATION/ SONGSADMINOPTION. P
Hp',
)I
),
'BEANS ' =>ARRAY (
ARRAY ('MODULE'=> 'SONGS', 'CLASS'=> 'SONG',
'PATH'=> ‘MODULES/SONGS/SONG.PHP', 'TAR'=> TRUE,)
).
'"RELATIONSHIPS'=>ARRAY (
ARRAY ('MODULE'=> 'CONTACTS',
"META_DATA'=>'<BASEPATH>/RELATIONSHIPS/CONTACTS_SONGSMETADA
TA.PHP',

‘MODULE_VARDEFS'=>"'<BASEPATH>/VRRDEFS/COONTACTS_VARDEFS.PHP'

)
ARRAY (
'MODULE'=> 'PRODUCTS',

‘META_DATA'=>'<BASEPATH>/RELATIONSHIPS/PRODUCTS_SONGSMETADA
TA.PHP',

‘MODULE_VARDEFS' =>'<BASEPATH>/VARDEFS/PRODUCTS_VARDEFS. PHP'
)

x FIG. 5A

U.S. Patent May 17, 2016 Sheet 6 of 8 US 9,342,292 B2

"CUSTOM_FIELDS'=>ARRAY (
//WILL BE REFERENCED AS SUDO_NAME_C
- _C INDICATES A CUSTOM FIELD
//CURRENT TYPES ARE
TEXT, TEXTAREA, DOUBLE, FLOAT, INT, DATE, BOOL, ENUM (SELECT), RELATE
ARRAY (‘NAME'=>'MUSIC_NAME',
'LABEL'=»"'MUSIC_NAME',
'"TYPE'=>"'TEXT",
"MAX_SIZE'=>255,
‘REQUIRE_OPTION'=>'OPTIONAL"',
'DEFAULT_VALUE'=>"'",

IEXT1|:>| l’
"EXT2'=>'",
'EXT3'=>"",
"AUDITED'=>0,

'MODULE ' => ' CONTACTS ',
),
ARRAY ('NAME' =>'URGENT BUG_ID',
'LABEL' =>'URGENT MUSIC BUG',
'TYPE' =3 RELATE ',
'MAX_SIZE'=>36,
'REQUIRE_OPTION’ =>'OPTIONAL"',
'DEFAULT_VALUE'=>"'",
'EXT1'=>'NAME', //FIELD TO GET
FROM TO MODULE (BUGS)
"EXT2'=>BUGS', //RELATE TO
MODULE
'EXT3=>"'",
'AUDITED' =>0,
"MODULE ' => ' CONTACTS,
//RELATE FROM MODULE
)
).

‘\J_’
\ o~

FG. 3B

U.S. Patent

May 17, 2016

182
UPGRADE FILE INTO STAGING

184
CALL UPGRADE SCRIPT

Sheet 7 of 8

US 9,342,292 B2

180

e

188

DETERMINE END
UPGRADE
190
READY TO INSTALL
1
' 198
134 ADD TO LIST
200

REPLACE?

REPLACE FILE

!

FIG. 6

US 9,342,292 B2

Sheet 8 of 8

May 17, 2016

U.S. Patent

=

SINDS - S30HNDS3Y - HOHY3S - SOHVAMBO: - CEG - SLINCGDAd - J0NAINIANCA - SN2 - STHOMSSVd
QLYOBHSYT | S3SVD {SLINQOKK 1 53L0NG { SALNALEDEAD 1SOV3R | SINAOJDY | SLIVINGD | SHUALLDY 1 GYONTTVD | WLHO0G AN T IAOH

[| (HOMSSYd 4380

[NI9OT 350

B JFdLE THY HIAH3S
TNITTD GIRL 36 TUNK FVHL 50 3HU HO4 CHOAMSSYS H3AH3S NS JHL o
INII 3H1 350 TUA LVHL 530 3HE HOH NISOT HEAHES HYANS 3HL »
TIACDI0S TR4UOR TIAG INATO SIHL H3AGS THL TV LATTNEHL »

i 1507138 TIM 35Y8Y1Y0 1907 3HL NO S1001

EINICFIH AV NINGRAA “ LN 3N H40 N QNI IMELSAS 3HL LHANDS QL 3AYS SS3td ONY NOILYWHOAN SNIMOTICY HL NG 1ONI0E V) @

13119 INN340 DL 1HINNOI Wil 1LV3HD @

AR 435N 1Y) o

JHE Nk B IN3ND 3NIT440 0L LHIANDD NOILYHLISININGY SINJLYOHS

T SSORT AN INAISVS B AR NGHINeS " ToNOD U A "VEDS I 07 "SHIL OS] TS ONMNOSTN D ARPIOVSIR0S TWIc CIMIA IS

NIAQY JINOTTIMN

|1 JLINSHVYONS 0007 ANQD 0K HUM 171
[~ Jn0BY | IN090T | NINGY | SITAOWINT | ANNOSOY AN Nd3dwvonNs

JONVHIS TWH06d - 90930 ~CIOUSTNE OGNN O9Ge [B 00U C0-NOLSNNDY=TO0NS AONLISHONERNINS SO VAdLH €D T:SS3qaay

SOV (O -ER-2|O Ui s Sy C5 5] [X]~O))

digH S|00] SajuonB4 malq 3pJ a3

X@E H3407dX3 L3NNI 140S0HIIN - WH 306N0S N3dO TWIGHIWINGA - WHJ.eBNnS O

US 9,342,292 B2

1
CUSTOMER RELATIONSHIP MANAGEMENT
SYSTEM AND METHOD

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority to U.S. patent application
Ser. No. 12/185,001, currently pending, filed Aug. 1, 2008,
which claims priority to U.S. patent application Ser. No.
11/504,746, filed Aug. 14,2006, which claims priority to U.S.
Provisional Patent Application No. 60/707,820, filed Aug. 12,
2005, the entirety of which are incorporated herein by refer-
ence.

FIELD OF THE INVENTION

The invention relates generally to a customer relationship
management system and method and in particular to a soft-
ware-based system and method for providing customer rela-
tionship management.

BACKGROUND OF THE INVENTION

Customer relationship management (CRM) systems and
solutions are well known. For example, typical known CRM
systems include Microsoft® CRM, e-Synergy, a CRM prod-
uct provided by SalesForce.com, Netsuite CRM, and SAP
Business One CRM. However, conventional CRM systems
have significant limitations that include a lack of flexibility,
high costs, and a closed-source structure which is embedded
into the traditional product offerings. These limitations have
led to a failure rate of over 70% with traditional CRM imple-
mentations. Thus, it is desirable to provide a customer rela-
tionship management system and method that overcomes
these limitations of typical CRM systems and it is to this end
that the invention is directed.

SUMMARY OF THE INVENTION

In accordance with the invention, a novel customer rela-
tionship management system and method are provided. In a
preferred embodiment, the CRM system is software based
and more preferably is an open source software CRM system.
The CRM system in accordance with the invention may
include a process for determining the number of queries per
page of the CRM application. Using this determination of the
number of queries per page, the developer is able to diagnose
performance issues during development and to quickly iso-
late the source of queries in the CRM application.

The CRM system may also include a module loader/un-
loader portion that allows for easy end user administration of
adding and removing components from the CRM application.
The components that may be added or removed may include
language packs, upgrades, new modules, and themes.

The system in accordance with the invention may also
include the ability to connect to a server as a mobile client.
When this is done using the system, the mobile client
becomes a miniature version of the application and it will
automatically synchronize all data of the specified username/
password, and also synchronize the application changes that
affect source code files, metadata, caches, and/or database
schema. In accordance with the invention, application
changes are synchronized only from the server to the client.
The application data changes are synchronized bi-direction-
ally and changes on the client and server are merged. The
system may also produce encoded version of the source code
before copying it to mobile clients to deter theft.

15

20

25

30

40

45

55

2

The system may also have a mechanism for tagging source
code in order to use one code base for multiple products. The
tags/comments are added to the files, the code, or the direc-
tories of the application. The directory level tags can be used
to remove directories from specific builds or only include
them in specific builds. For instance if there is a module that
is in a professional and enterprise builds only and is not in an
open source product, a file may be placed in that folder that
tells the build process to remove the entire folder if it is not
doing a professional or enterprise build of the CRM system.
The file level tags can be used to remove entire files from
specific builds or only include them in specific builds. The
code level tags can be used to remove sections of code specific
builds or only include them in specific builds. In accordance
with the invention, the tags are removed from the built version
of the code.

The system may also include an upgrade process that
includes change detection and system verification. In some
typical open source programs, the open source programs will
have users unzip over their current installation so that any
customizations are lost. In accordance with the invention, the
upgrading process may perform change detection to ensure
that changes are not lost and system verification. The system
may also include PHP session security enhancements
wherein PHP is a server-side, cross-platform scripting lan-
guage that lets you create dynamic web pages. The system
enhances the PHP session through the use of an Application
GUID and IP Address tracking so that PHP sessions are tied
to a specific server instance or specific server cluster and a
specific client IP address.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram illustrating a customer relationship
management system in accordance with the invention that
incorporates the various features of the invention;

FIG. 2 is a diagram illustrating an example of the user
interface of the system in FIG. 1;

FIG. 3 is a diagram illustrating the customer relationship
management system with the query counter in accordance
with the invention;

FIG. 4 is an example of a user interface of the administra-
tion module in accordance with the invention that incorpo-
rates module loader and upgrade wizard modules in accor-
dance with the invention;

FIGS. 5A and 5B are an example of the manifest code for
a module that can be loaded into the system using the module
loader module;

FIG. 6 is a flowchart illustrating an upgrade process in
accordance with the invention; and

FIG. 7 is an example of a user interface for configuring an
offline client of the system shown in FIG. 1.

DETAILED DESCRIPTION OF A PREFERRED
EMBODIMENT

The invention is particularly applicable to an open source
customer relationship management (CRM) software system
and it is in this context that the invention will be described. It
will be appreciated, however, that the algorithms, data struc-
tures, processes and modules in accordance with the inven-
tion has greater utility since these modules and inventive
aspects disclosed herein can be equally applied to other non-
open source CRM systems, as well as other business software
application systems as well as other database software sys-
tems. For purposes of illustration, the described system is an
implementation in a CRM and groupware system although

US 9,342,292 B2

3

the inventive methods apply across multiple systems. In the
example, the CRM and groupware system is SugarCRM
Inc.’s Sugar Professional 3.5. It is a database driven applica-
tion that demands quick response time.

The system may be implemented in a preferred embodi-
ment using a base class known as SugarBean, and a data
retrieval API. The base class has methods for building list
queries, saving, and retrieving individual items. Each specific
type of data creates a subclass of this base class. In a preferred
embodiment of the invention, the base class is called Sugar-
Bean. There is at least one subclass of SugarBean for each
module. SugarBeans are used for creating database tables,
cleaning out database tables, loading records, loading lists,
saving records, and maintaining relationships. One example
of'a SugarBean subclass is Contact. Contact is a simple object
that fills in some member variables on the SugarBean and
leverages SugarBean for much of its logic. Security for
instance, is automatically created for Contact. Another
example of a SugarBean subclass is Users which is a module
that is security related and should not have row level security
applied to them. For this reason these modules have the
bypass flag set to skip adding the right join for verifying
security. The SugarCRM Sugar Professional system is a web
based system with many concurrent users. Since this program
contains critical data to the users, it is imperative that they
have quick access to the system and their data. The most
frequent activity in an SFA application is to look at existing
data.

FIG. 1 is a diagram illustrating a customer relationship
management (CRM) system 100 in accordance with the
invention. In a preferred embodiment, the system 100 in
accordance with the invention is implemented as a software
system that may preferable use open source code. In the
preferred embodiment, the elements shown in FIG. 1 are thus
implemented as a plurality of lines of computer code that may
be executed by a processor of a computer system, such as a
server computer wherein the various lines of computer code
are stored in a memory associated with the computer system
and the system interfaces with a database 110. The system
may have one or more clients 102, such as a browser appli-
cation executed on a typical computing device (a browser
client session), that accesses the system over a computer
network 103 such as the Internet. The client 102 interactions
go through a set of one or more controllers 104. The control-
lers are the entry-point into the system and take care of things
like session tracking and session security and end user
authentication. The controllers also take care of the work to
prepare the screen or the wrapper for the content and deter-
mine which module of the application the user is trying to
access and get the requested module to process the request.
The system thus has one or more modules 106 that are com-
ponents of application functionality and provide certain func-
tionality. The modules 106 of the CRM system may include,
by way of example, a portal module, a calendar module, an
activities module, a contacts module, an accounts module, a
leads module, an opportunities module, a quotes module, a
products module, a cases module, a bug tracker module, a
documents module, an emails module, a campaigns module,
a project module, an RSS module, a forecasts module, a
reports module and a dashboard module. Each of these mod-
ules provides a different functionality to the system so that,
for example, the calendar module provides a calendaring
functionality to the CRM system that is instantiated with the
system. The system may also include an administration mod-
ule that handles the typical administrative functions of the
system. Each module contains a subclass ofa SugarBean base

10

15

20

25

30

35

40

45

50

55

60

65

4

object 108 and each module references the SugarBean to
retrieve the data from the database 110 required for display.

FIG. 2 is a diagram illustrating an example of the user
interface 120 of the system in FIG. 1. The user interface may
include a home tab 121 (that is selected in FIG. 2) that pro-
vides a general overview of Cases, Opportunities, Appoint-
ments, Leads, Tasks, Calendar, Team Notices, and Pipeline.
The home tab also includes shortcuts to enter most sorts of
data, and a quick form for new contacts. The home tab also
provides a quick overview of what customer tasks and activi-
ties you need to focus on today. The portal module (selected
using a my portal tab 122), contains a series of shortcuts
which can link to any web site you choose that may include
e-mail, forums, or any other web-based application, allowing
the system to become a single user interface for multiple
applications. The calendar module may be selected by a cal-
endar tab 124 and allows the user to view scheduled activities
(by day, week, month or year), such as meetings, tasks, and
calls. The system also allows the user to share his/her calendar
with coworkers which is a powerful tool for coordinating the
daily activities. The activities module is selected using an
activities tab 126 and allows the user to create or update
scheduled activities, or to search for existing activities. By
managing Activities within the context of an Account, Con-
tact, Lead, Opportunity, or Case, the system allows the user to
manage the myriad of calls, meetings, notes, emails and tasks
that the user needs to track in order to get the job done. The
tasks are for tracking any action that needs to be managed to
completion by a due date, the notes allow the user to capture
note information as well as upload file attachments, the calls
allow the user to track phone calls with leads and customers,
meetings are like calls, but also allow the user to track the
location of the meeting and emails allow the user to archive
sent or received email messages.

The contacts module is accessed by a contacts tab 128 and
allows the user to view a paginated contact list, or search for
a contact. The user can click on a specific contact to zoom in
on the detailed contact record and, from a specific contact
record, the user may link to the related account, or leads,
opportunities, cases, or direct reports (related contacts).
Within the system, contacts are the people with whom the
organization does business. As with accounts, the system
allows the user to track a variety of contact information such
as title, email address, and other data. Contacts are usually
linked to an Account, although this is not required. The
accounts module may be accessed using an accounts tab 130
and the user may view a paginated account list, or search for
an account. The user can click on a specific account to zoom
in on the detailed account record and, from a specific account
record, the user may link to related contacts, activities, leads,
opportunities, cases, or member organizations. Accounts are
the companies with which the organization does business and
the system allows the user to track a variety of information
about an account including website, main address, number of
employees and other data. Business subsidiaries can be linked
to parent businesses in order to show relationships between
accounts.

The leads module may be accessed by a leads tab 132 that
permits the user to view a paginated list of leads, or search for
a specific lead. The user can click on an individual lead to
zoom in on the lead information record and, from that detailed
lead record, the user can link to all related activities, and see
the activity history for the lead. Leads are the people or
companies with whom the organization might do business in
the future. Designed to track that first point of interaction with
a potential customer, leads are usually the hand off between
the marketing department and the sales department. Not to be

US 9,342,292 B2

5

confused with a contact or account, leads can often contain
incomplete or inaccurate information whereas contacts and
accounts stored in Sugar Professional are core to many busi-
ness processes that require accurate data. Leads are typically
fed into the Sugar Professional system automatically from
your website, trade show lists or other methods. However, the
user can also directly enter leads into Sugar Professional
manually.

The opportunities module is accessed by an opportunities
tab 134 and permits the user to view a paginated list of
opportunities, or search for a specific opportunity. The user
can click on an individual opportunity to zoom in on the
opportunity information record and, from that detailed oppor-
tunity record, the user can link to all related activities, see the
activity history for the opportunity, and link to related leads
and contacts. Opportunities track the process of selling a good
or service to a potential customer. Once a selling process has
commenced with a lead, a lead should be converted into a
contact and possibly also an account. Opportunities help the
user manage the selling process by tracking attributes such as
sales stages, probability of close, deal amount and other infor-
mation. The quotes module may be accessed by a quotes tab
136 and permits the user to view a paginated list of customer
quotes, or search for a specific quote. The user can click on an
individual quote to zoom in on the detailed quote information.
A quote is formed by referencing product and pricing from a
catalog of products you may create. A presentation quality
Portable Document Format (PDF) representation of the quote
may be created to fax or email to a client. Quotes may be
associated with Accounts, Contacts, or Opportunities.

The products module may be accessed by a products tab
138 and permits the user to view a paginated list of products,
or search for a specific product. The user can click on an
individual product to zoom in on the detailed product infor-
mation. A product is used when assembling a customer quote.
The cases module may be accessed using a cases tab 140 and
may permit the user to view a paginated list of cases, or search
for a specific case. The user can click on an individual case to
zoom in on the case information record and, from that
detailed case record, the user can link to all related activities,
see the activity history for the case, and link to related con-
tacts. The cases are the handoft between the sales department
and the customer support department and help customer sup-
port representatives manage support problems or inquiries to
completion by tracking information for each case such as its
status and priority, the user assigned, as well as a full trail of
all related open and completed activities. The bug tracker
module may be accessed using a bug tracker tab 142 and
permits the user to view a paginated list of reported software
bugs. The user can click on an individual bug to zoom in on
the detailed bug report and, from that detailed bug report, the
user can link to all related activities, see the activity history
for the bug, and link to related Contacts, Accounts, and Cases.
The tracking software bugs is an important function of a
customer support department. The Bug Tracker module helps
customer support representatives manage software-related
support problems or inquiries to completion by tracking
information for each bug such as its status and priority, its
resolution, the user assigned, the release of software involved,
its type (defect or feature) as well as a full trail of all related
open and completed activities.

The documents module may show the user a list of docu-
ments that the user can download. The user can also upload
documents, assign publish and expiration dates, and specify
which users can access them. The email module allows the
user to write and send emails and to create Email Templates
that can be used with email-based marketing campaigns. The

10

15

20

25

30

35

40

45

50

55

60

65

6

user can also save drafts and archive emails. The campaigns
module helps the user implement and track marketing cam-
paigns wherein the campaigns may be telemarketing, mail or
email based. For each Campaign, the user can create the
Prospects list from the Contacts or Leads or outside file
sources. The projects module helps the user manage tasks
related to specific projects. Tasks can be assigned to different
users and assigned estimated hours of effort and, as tasks are
in progress and completed, users can update the information
for each task. The RSS module permits the user to view the
latest headlines provided by your favorite RDF Site Summary
(RSS) feeds. These feeds provide news or other web content
that is distributed or syndicated by web sites which publish
their content in this manner. The system has hundreds of RSS
feeds available as supplied, and others may easily be added.

The forecasts module shows the user his/her committed
forecast history and current opportunities. For managers, the
user can view your team’s rolled up forecasts. The reports
module shows the user a list of saved custom reports not yet
published, as well as a list of Published Reports. Saved
reports may be viewed, deleted or published, and published
reports may be viewed, deleted or un-published. Clicking on
the name of a report zooms to the detailed definition of the
report criteria (fields to be displayed, and filter settings) for
that report, permitting the user to alter the criteria, and re-
submit the report query. Finally, the dashboard module dis-
plays a graphical dashboard of the user’s Opportunity Pipe-
line by Sales Stage, Opportunities by Lead Source by
Outcome, Pipeline by Month by Outcome, and Opportunities
by Lead Source.

Returning to FIG. 1, the system also includes the database
110 that contains the data of the system and a security module
112 that implements the security methods to control access to
the data in the database 110. The system may also include a
database abstraction layer 114 that is coupled between the
database 110 and the SugarBean object 108 in order to by an
interface between the database 110 and the SugarBean object
108. The SugarBean object 108 provides the base logic
required for retrieving and making available information
from the database and each module creates subclasses of
SugarBean to provide module specific details. During the
process of retrieving data from the database, the SugarBean
108 makes calls that populate the row level security informa-
tion into the SQL that retrieves the data.

Once the data is retrieved from the SugarBean object 108,
the module uses a template mechanism 118 and a theme 116
to produce the requested presentation for the user. The tem-
plate mechanism reformats the data from the database 110
into a particular form while the theme adjusts the user inter-
face according to the user’s preferences. If, for instance, the
user requests an HTML presentation of the detail view of the
contact module for a specified contact, here is the flow of what
happens. The user hits the controller named index.php. It
handles most of the logic for the main application. The index
controller loads the current user, verifies authentication and
session information, loads the language for the user and pro-
duces some of the UI shell. It then calls the contact module
and request the detail view for the specified contact. The
contact module retrieves the SugarBean for the requested
contact. The SugarBean verifies row level security at this
point. If the record is not retrieved successfully, then the
process aborts and the user is not allowed to view the data for
the record. If the retrieve succeeds then it uses the X Template
mechanism and the code for the current user’s theme to create
the U for presentation. The resulting UI is sent back to the
client that requested it.

US 9,342,292 B2

7

FIG. 3 is a diagram illustrating the customer relationship
management system 100 with the query counter in accor-
dance with the invention. As shown, a query counter module
150 is coupled to the controllers 104 and the database abstrac-
tion layer 114. The query counter module, that may be pref-
erably implemented as a piece of software code having a
plurality of lines of computer code resident on the server
computer that is executed by the processor of the server
computer, determines the number of database queries on each
page of the application during development and when
enabled on production systems to try and demonstrate and
diagnose performance issues. In more detail, the module
determines, for each page on the screen, the query counts per
section of the screen and for the screen as a whole. The
module also provides the user with the ability to show all of
the queries next to the portion of the screen that the query was
executed to populate which allows developers to quickly iso-
late the source of queries and also gives them a quick numeric
value to judge changes against during the development.

FIG. 4 is an example of a user interface 160 of the admin-
istration module in accordance with the invention that incor-
porates a module loader module in accordance with the inven-
tion. The administration module permits an administrator of
the system to perform various administrative functions
including configuring of the system. The administrator mod-
ule may include a module loader module that may be selected
by a module loader tab 162. The loader module allows the
easy end user administration of adding and removing com-
ponents from the application. These components that may be
added/removed from an application that is run on the system
may include language packs, upgrades, new modules, and
themes. The module can basically be used to make any
changes to the sugar code-base that you would want. As
shown, in the administration user interface, there is a screen to
upload new modules. Once a module is uploaded, it, along
with details about it, is listed as available for installation. If
you click install, it is installed and then moved into the
installed modules list and is available for un-installation.
Internally, it handles all of the file management, metadata
changes, SQL, and allows for arbitrary PHP code execution.

In accordance with the invention, the module loading may
be implemented using a manifest file 170, an example of
which is shown in FIGS. 5A and 5B. The manifest file format
is used to enable loading Modules, Patches, Themes, and
Language Packs, to the Sugar server/system. In the example
shown in FIGS. 5A and 5B, a zip file for the “Songs” module
is provided that is an example for creating your own Sugar
loadable modules. The manifest file format is used for the
module loader as well as an upgrade wizard as described
below in more detail.

The manifest file format is shown in the sample module
“Songs” as an example to see how files should be formatted
and how the loading mechanism and manifest file works. The
manifest file may include an “Acceptable_sugar_versions”
variable that contains the version of the sugar server that must
be present to load this module. The format of the version
dependency check can be provided as an exact match, oras a
regex comparison. The manifest file may also include an
“Acceptable_sugar_flavors” variable that specifies the flavor
of'sugar server which currently include Open Source, Profes-
sional, and Enterprise flavors. If there are elements or depen-
dencies on functionality in a specific flavor this parameter
should be used to specify what is required. If there are no
restrictions or limitations, the variable may specify all of the
supported sugar flavors.

The manifest file may also include a “Name” variable that
contains a user readable name for the module that this name

10

20

25

30

35

40

45

50

55

60

65

8

will be displayed in the Sugar Admin interface when loading
and installing the module. The manifest file may also include
a “Description” variable that contains a description of the
module that is displayed in the Sugar Admin interface, an
“Author” variable that contains the name of the person or
company that authored the module, a “Published Date” vari-
able that contains the date the module was published or last
revised and a “Version” module that contains the version that
the module. The manifest file may also contain a “Type”
variable that contains the type of package that is contained in
the zip file. Currently the module loader only supports “Mod-
ules”, and the upgrade Wizard provides support for language
packs, themes, patches, and a full upgrade. The manifest file
may also include an “Icon” variable that contains the relative
path and name of the icon file in the zip file the Sugar Loader
should use to display in the Sugar Admin interface for this
module. The system will use default icons if this is left blank.
Finally, the manifest file may also contain a “Copy_files”
variable that is an array of file copy instructions that specify
the From & To source and destination for folders and files.
The processing just walks through this tree moving the files as
specified, folders are copied recursively.

The system in accordance with the invention also has a
novel upgrade process that is implemented from atab 164 that
launches an upgrade wizard module from the administrator
user interface shown in FIG. 4. The upgrade wizard module is
preferably a software module executing on the server that
performs the upgrade process that includes change detection
and system verification as will now be described.

FIG. 6 is a flowchart illustrating an upgrade process 180 in
accordance with the invention. During an upgrade/update in
accordance with the invention, change detection occurs that
compares changes in the prior version of the code to the
upgraded version. In a typical open source program, the pro-
gram has the users unzip the upgrade over their current instal-
lation so that the user may loose any customizations that they
may have made to the open source product. Thus, in step 182,
the upgrade process starts by putting the file into a staging
folder. Then, in step 184, an upgrade script is called that
performs some checks on the upgrade file prior to beginning
the upgrade process. In step 186, the upgrade script ensures
that the system that it is upgrading is one of the known
systems that it should be able to upgrade from. If the system
is known, then in step 188, the upgrade script determines the
upgrade steps that are needed from the specific installed ver-
sion on the system since one upgrade package could support
multiple prior versions and each version may have a slightly
different series of upgrade steps. This makes the upgrade
process much faster and easier than requiring the user to step
through each version in sequence.

Now, in step 190, the upgrade is ready to install as the
checks have been performed. In step 192, the upgrade process
determines if there are more files in the upgrade that need to
be compared. This loop ensures that all of the files contained
in the upgrade are compared and handled appropriately. Thus,
during the installation process, the upgrade system looks at all
of'the files on the system that is being upgraded. In step 194,
the system calculates a checksum, that may preferably be an
MDS checksum, for a file in the upgrade. The MDS5 checksum
may be independent of line feeds, source code control system
tags, and/or changes to whitespace in the source code. In step
196, the system determines if the checksum value is one of the
known values from previous builds (with either Unix or dos
line feeds) or matches a shipped version. If the sum is known,
then the file is considered safe to replace since no customiza-
tions will be lost during replacement and the method loops
back to step 192 to compare the checksum of the next file. If

US 9,342,292 B2

9

the checksum is not known, the file is added in step 198 to a
list of files that will be checked by the user. Any file that is not
part of that list is automatically replaced once the method is
completed. The method then loops back to step 192 to com-
pare the checksum of the next file. When all of the files in the
upgrade have been checked, the method proceeds to step 200
in which the list of files whose checksums are not known is
presented to the user so that the user can select the files from
the list to be replaced during the upgrade. In step 202, the
replacement of the original files with the files of the upgrade
occurs. In this step, the files whose checksums were known as
well as the files selected by the user from the list are replaced.
Then, in step 204, another script is run to perform any further
processing on the upgrade. In this manner, the upgrade of the
application is handled without losing any customizations
made by the user.

FIG. 7 is an example of a user interface 210 for configuring
an offline client of the system shown in FIG. 1. This user
interface permits the system to configure the system and
server to provide a connection to a mobile client. When this is
done, the mobile client becomes a miniature version of the
application and it will automatically sync all data that the
specified username/password has, and also sync the applica-
tion changes as well. The application code changes are
synced in a per file basis, only files that are not the same
between the client and the server are synced and all code
syncs are one way in that they only go from the server to the
client. Any metadata and schema changes are synced the
same way. Any changes to the code, metadata, configuration,
schema on the server are automatically synced to the client.
These changes are also synced as deltas and there is no full
sync after the first time.

Application data changes are synced bi-directionally and
change on the client and the server are merged. This bidirec-
tional synchronization updates both the client and the server
with the latest changes from the other machine and handles
conflict resolution. During the synchronization, the user gets
a user interface that shows them the progress of the synchro-
nization process.

The mobile client synchronization may also include a secu-
rity feature. In particular, since the system software is devel-
oped in PHP and most PHP programs are plain text, the code
is somewhat easy to steal. To deter that activity, an encoded/
encrypted version of the source may be produced before
copying it to mobile clients. The process for Mobile Sync
with Code Encryption would be able to take the current code
from the server, encrypt it completely into a binary executable
form, and then send the encrypted application down to the
mobile client. This allows for mobile client functionality,
easy change and administration on the server (since it is still
unencrypted on the server), and makes it very hard for mobile
client users to modify or steal the source code of the applica-
tion. This increases the integrity of the system on a global
scale.

The mobile client in accordance with the invention may
support a subset of the total number of modules available on
the server. Currently the Home, Calendar, Accounts, Con-
tacts, Leads, Opportunities, Quotes, Products, Forecasts, and
Documents are supported. With the exception of the Docu-
ment all data a user has access to (i.e., can see), is synced to
their client. The Documents module will always sync the list
of documents (i.e., titles) the user has access to, but not the
actual files. To get specific files synced to the client a user
must select the individual files they wish to have kept current
ontheir client. This is done by accessing the list of Documents
when disconnected and setting a flag on each document you
want synced to your client. Once the flag is set for a docu-

10

15

20

25

30

35

40

45

50

55

60

65

10

ment, new versions of the document (the actual file) will
automatically be synced to the client on future sync opera-
tions. This is done as syncing all documents could potentially
take a very long time. A mobile client does not send email or
log audit operations. These operations are deferred and oper-
ated on by the server as records are synchronized.

In order to be an oftline/mobile client, the system operating
the mobile client must have the WAMP/L AMP stack installed
prior to installing the Sugar Enterprise software. There is just
one version of the Sugar Enterprise software once it is
installed there are setup steps that configure it to work as an
offline client. This insures the application works and looks the
same when the user works connected to the server or discon-
nected via the offline client. On the server/system side, an
administrator must create a valid login and password for the
server for the mobile client. Now, the installation of the
mobile client will be described. The steps include:

1. Install the WAMP/LAMP stack, just like you normally

would for a Sugar server.

2. Install the Professional or Enterprise version of Sugar,
creating a user and the database, but do not populate seed
data.

3. Logon to the client system as admin.

4. Go to the Admin screen, select the “Repair” section then
select “Convert to Offline Client”. The screen from FIG.
7.

5. Specify the Sugar Servers URL. For example, http://
localhost/sugar35

6. Specify the login user name and password the user of this
client normally uses when connecting to the server (e.g.,
will, will).

7. Press the submit button, you will get a confirmation
screen press the OK button to continue, or Cancel to exit
the conversion steps. The conversion normally takes a
minute or two.

a. The sync processing initially verifies and copies over
any application files modified or customized on the
Sugar server. This insures that the client systems are
automatically receive any modifications made to the
server.

b. During the sync process, the user may receive frequent
updates as to the progress, the percent of the sync
complete, and the current step in the process.

c. Once the application files are synced the records
accessible to the user are synced.

8. The screen should come back and say it was converted to
an offline client.

9. At this time log out of the client install (you’re still
Admin), and login as the user that will have the client.

10. To insure everything is working correctly and to do the
initial sync for the user. The Sync link is located near the
Logout link. Select “Start Sync” The sync pop-up will
appear and allow you to select the sync mode. Select
“Prompt”, and begin the sync operation. Sync process-
ing should begin, and the progress bars will show how
far in the process you are. The initial sync will take
longer than normal daily sync operations as there is
more data to move from the server to the client.

11. When the sync process is done it will indicate this in the
pop-up.

a. If any errors are encountered in the sync process they
are logged in the sync.log file in the clients root direc-
tory. For example, C:/Program Files/Apache/htdocs/
sugar35c/sync.log.

b. The log can also be viewed via the sync pop-up by
selecting the “details™ link.

US 9,342,292 B2

11

The system in accordance with the invention may also
include a mechanism for tagging source code to use one code
base for multiple products wherein comments are added to
the files, the code, or the directories of the application. The
tags are comments in the various languages that are used in
the product. (e.g. end of line in php “//’ or html comments . .
.) In this way, the default checked in version of the product is
fully functional and does not require a build. This massively
speeds up development.

The directory level tags can be used to remove directories
from specific builds or only include them in specific builds.
For instance if there is a module that is in our professional and
enterprise builds only and is not in our open source product,
the system may put a file in the folder of that module that tells
the build process to remove the entire folder if it is not doing
a professional or enterprise build. The file level tags can be
used to remove entire files from specific builds or only include
them in specific builds similar to the directory level tags
example above except used for a particular file.

The code level tags can be used to remove sections of code
specific builds or only include them in specific builds similar
to the directory level tags example above except used for a
piece of code. For the code level tags, a start tag can be placed
before the code that we want to exclude and an end tag after
the code. When the build process gets to code level tags, if the
code in question is not appropriate for the current build, the
tags and the code are stripped out of the source code. When
the tags and the code are removed from the build, blank lines
are put back in place to make the lines match up between all
versions of the application. This is important for debugging
since most error messages mention a line number. When
debugging a problem, the developer does not typically have to
have a specific build. As long as the code in question is in their
particular build, the line number will be correct.

The system may also include PHP session security
enhancements (using security source code) in accordance
with the invention. PHP is a server side scripting language
that is well known. To enhance PHP session security, the
system may use an Application GUID and IP Address track-
ing. PHP sessions are tied to a specific server or specific
server cluster, but they do not have any restrictions to a spe-
cific application or web folder on that server. This means that
a user that is allowed to create a session in one PHP applica-
tion on a server can hop that session over to another PHP
application on the same server. Thus, the system uses an
application ID. The application ID is a GUID that is randomly
generated during the install (or end user specified during the
install) that will be used to verify that the session the user is
attempting to use with our application is a valid session for
this particular application. Without this ID, the system and all
of its contents are only as secure as the least secure PHP
application that has been installed on the server.

The other security change is the tracking of the IP Address
that the user is using the application from during the session.
If another user tries to use the application from a completely
different IP address, this is detected, the user is denied, and
the session is destroyed because it is considered compro-
mised. The default behavior is to let all IP addresses with the
same first three octets in their [P addresses (e.g.
192.168.1 xxx where xxx can be any numbers) will be con-
sidered the same IP. This allows for load balancing of out-
bound traffic without tripping the security mechanism. How-
ever, the system may also be configured to be more strict. The
security source code prevents end users from accessing one of
the module files directly as all entry points in the application
must be declared. In addition, any breach in security or per-

10

15

20

25

30

35

40

45

50

55

60

12

ceived breach in security will result in the session in question
being destroyed to prevent systematic attacks.

The system also provides calendar synchronization
between the system and Outlook. Thus, the system has an
interface and API with Outlook so that the free/busy indica-
tion in an Outlook calendar may be merged into the meetings
stored in the system. In more detail, the system will accept
and respond to Outlook free/busy API calls. When the user
configures an Outlook free/busy server, it will post all of the
times in which you are scheduled to be in a meeting over the
next 2 months to the server. It will also check to see when
other people are available when you are scheduling a meeting
using the same free/busy server. In addition to storing and
repeating the free/busy information for users that are sub-
scribed, the system goes a little bit deeper. In particular, when
the free/busy information for a user is requested, we produce
a single list of all the busy blocks of time from both the
outlook data from that user (if available) and the meetings
recorded in the system. This provides a single combined list
of' busy times to Outlook when people are trying to schedule
meetings. In addition, when looking at the calendar in the
system you will see the combined list of busy blocks for your
system meetings and the meetings you have scheduled in
Outlook. When scheduling a meeting with other people, you
will also get the system and Outlook meetings for each invited
user. The calendar synchronization may also be provided for
other external calendar programs such as Lotus® Domino,
Google® Calendar, Oracle® Calendar, SAP® Calendar,
Zimbra® Calendar, Scalix® Calendar or Novel® Groupwise.

The system may further include a business card screen that
provides the user of the system with a quick entry form for
creating items from business cards. The business card screen
allows users to quickly enter the information contained on a
common business card and also create follow up items and
additional notes at the same time. This single screen allows
for the quick entry of an entire contact, account, opportunity,
notes, tasks, calls, meetings, . . . in one round trip to the server.
This not only presents the information is a user friendly
format, it also saves the user a lot of time.

While the foregoing has been with reference to a particular
embodiment of the invention, it will be appreciated by those
skilled in the art that changes in this embodiment may be
made without departing from the principles and spirit of the
invention, the scope of which is defined by the appended
claims.

The invention claimed is:

1. A computer system comprising a processor and memory,
the system comprising a computer program stored in fixed
storage of the computer system that when loaded into the
memory of the computer system, performs an upgrade
method for an open source software application, the method
comprising: receiving an upgrade package to upgrade an
existing open source software application;

identifying, for each file in the upgrade package, if the file

does not match a prior version of the file in order to
indicate a file in the existing open source software appli-
cation that has been customized;
automatically upgrading the files in the upgrade package
that are not identified as being customized; and

selectively, based on one of user instructions and default
logic, upgrading the files identified as being customized
so that the customizations from the existing open source
software application are not lost during the upgrade
process.

2. The system of claim 1, wherein identifying the custom-
ized file further comprises computing a checksum for each
file in the upgrade package and comparing the computed

US 9,342,292 B2

13

checksum against known checksum values for the file from a
previously installed version of the software application.

3. The system of claim 2, wherein computing the checksum
further comprises computing an MD5 checksum.

4. The system of claim 2, wherein computing the checksum
further comprises computing an MD5 checksum that is inde-
pendent of line feeds, source code control system tags, and/or
changes to whitespace in the source code.

5. A computer program product for upgrading an open
source software application, the computer program product
comprising:

a non-transitory computer readable storage medium hav-
ing computer readable program code embodied there-
with, the computer readable program code comprising:

computer readable program code for receiving an upgrade
package to upgrade an existing open source software
application;

computer readable program code for identifying, for each
file in the upgrade package, if the file does not match a
prior version of the file in order to indicate a file in the
existing open source software application that has been
customized;

computer readable program code for automatically
upgrading the files in the upgrade package that are not
identified as being customized; and

10

15

20

14

computer readable program code for selectively, based on
one of user instructions and default logic, upgrading the
files identified as being customized so that the customi-
zations from the existing open source software applica-
tion are not lost during the upgrade process.

6. The computer program product of claim 5, wherein the
computer readable program code for identifying the custom-
ized file further comprises computer readable program code
for computing a checksum for each file in the upgrade pack-
age and comparing the computed checksum against known
checksum values for the file from a previously installed ver-
sion of the software application.

7. The computer program product of claim 6, wherein the
computer readable program code for computing the check-
sum further comprises computer readable program code for
computing an MDS5 checksum.

8. The computer program product of claim 6, wherein the
computer readable program code for computing the check-
sum further comprises computer readable program code for
computing an MD5 checksum that is independent of line
feeds, source code control system tags, and/or changes to
whitespace in the source code.

#* #* #* #* #*

